Citation: | WANG Yi, ZHANG Jun-qing, KUANG Shuai, GUAN En-sen, ZHUO Qi-cui, SONG Xiao-pei, LU Wei-long, WANG Da-hai, LIU Yue-dong, ZHANG Ji-guang. Effects of wheat straw and its biochar application on soil physiochemical properties and organic carbon fractions in flue-cured tobacco field[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(2): 285-294. DOI: 10.11674/zwyf.19078 |
To understand the effects of wheat straw and its biochar on soil physiochemical properties and organic carbon fractions to provide basis for improvement of flue-cured tobacco planting soil.
A two-year field experiment was carried on the meadow-cinnamon soil in 2016 and 2017 in Zhucheng, Shandong Province. Four treatments were designed, namely, chemical fertilizer alone (CK), chemical fertilizer plus wheat straw (FS), chemical fertilizer plus biochar of 2.25 t/hm2 (FB1), and 4.50 t/hm2 (FB2). At tobacco harvest, soil samples were collected in the plough layer (0−20 cm), and soil physiochemical properties and contents of microbial biomass C (MBC), hot-water extractable C (HWC), labile organic C (LOC), light fraction organic C (LFOC), and carbon pool management index (CPMI) were investigated.
The TOC contents in FB1 and FB2 was 74.9% and 116.0% significantly higher than that in CK, whereas no significant difference was found between FS and CK. The variation trend of LFOC in the four treatments was similar to that of TOC, and LFOC content in FB1 and FB2 was 154% and 326% significantly higher than that in CK. No significant difference in HWC content was observed between FS and FB2, while HWC content in FS treatment was significantly higher than that in FB1 and CK. In comparison with CK, HWC content in FS was increased by 107%. MBC content in FS and FB2 was significantly higher by 252% and 144% than that in CK, but no significant difference was found between FB1 and CK. LOC content in FS was significantly increased by 68.9% compared to that in CK, while no significant difference was found among FB1, FB2 and CK treatments. In addition, wheat straw returning (FS) significantly decreased soil bulk density and increased soil water content and soil available P content, which had a better effect on some soil physical and chemical properties than those of biochar treatments. The FS treatment also had the highest value of CPMI, which was 73.5% significantly higher than that of CK. However, the biochar treatments (FB1 and FB2) decreased or changed a little CPMI in comparison with CK.
The continuous incorporation of wheat straw could increase the contents of soil labile organic carbon fractions of MBC, HWC and LOC, improve soil physiochemical properties, whereas wheat straw biochar could increase the stability of soil organic carbon, which is beneficial for the long-term stable fixation of soil organic carbon.
[1] |
李雪利, 叶协锋, 顾建国, 等.土壤C/N比对烤烟碳氮代谢关键酶活性和烟叶品质影响的研究[J]. 中国烟草学报, 2011, 17(3): 32–36. DOI: 10.3969/j.issn.1004-5708.2011.03.007
Li X L, Ye X F, Gu J G, et al. Effect of soil C/N ratio on activity of key enzymes involved in carbon and nitrogen metabolism and quality of flue-cured tobacco leaves[J]. Acta Tabacaria Sinica, 2011, 17(3): 32–36. DOI: 10.3969/j.issn.1004-5708.2011.03.007
|
[2] |
陆欣.土壤肥料学[M]. 北京:中国农业大学出版社, 2002.
Lu X. Soil fertilizer science[M]. Beijing: China Agriculture University Press, 2002.
|
[3] |
路文涛, 贾志宽, 张鹏, 等. 秸秆还田对宁南旱作农田土壤活性有机碳及酶活性的影响[J].农业环境科学学报, 2011, 31(3): 522–528.
Lu W T, Jia Z K, Zhang P, et al. Effects of Straw returning on soil labile organic carbon and enzyme activity in semi-arid areas of southern Ningxia, China[J]. Journal of Agro-Environment Science, 2011, 31(3): 522–528.
|
[4] |
Liang B C, Mackenzie A E, Schnitzer M, et al. Management induced change in labile soil organic matter under continuous corn in eastern Canadian soils[J]. Biology and Fertil of Soils, 1997, 26 (2): 88–94. DOI: 10.1007/s003740050348
|
[5] |
Lefroy R D B, Blair C, Strong W M. Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance[J]. Plant and Soil, 1993, 155-156 (1): 399–402. DOI: 10.1007/BF00025067
|
[6] |
徐明岗, 于荣, 王伯仁. 长期不同施肥下红壤活性有机质与碳库管理指数变化[J]. 土壤学报, 2006, 43(5): 723–729. DOI: 10.3321/j.issn:0564-3929.2006.05.003
Xu M G, Yu R, Wang B R. Labile organic matter and carbon management index in red soil under long term fertilization[J]. Acta Pedologica Sinica, 2006, 43(5): 723–729. DOI: 10.3321/j.issn:0564-3929.2006.05.003
|
[7] |
Tan D S, Jin J Y, Huang S W, et al. Effect of long–term application of K fertilizer and wheat straw to soil on crop yield and soil K under different planting systems[J]. Agricultural Sciences in China, 2007, 6(2): 200–207. DOI: 10.1016/S1671-2927(07)60035-2
|
[8] |
王虎, 王旭东, 田宵鸿. 秸秆还田对土壤有机碳不同活性组分储量及分配的影响[J]. 应用生态学报, 2014, 25(12): 3491–3498.
Wang H, Wang X D, Tian X H. Effect of straw–returning on the storage and distribution of different active fractions of soilorganic carbon[J]. Chinese Journal of Applied Ecology, 2014, 25(12): 3491–3498.
|
[9] |
李新华, 郭洪海, 朱振林, 等. 不同秸秆还田模式对土壤有机碳及其活性组分的影响[J]. 农业工程学报, 2016, 32(9): 130–134. DOI: 10.11975/j.issn.1002-6819.2016.09.018
Li X H, Guo H H, Zhu Z L, et al. Effects of different straw return modes on contents of soil organic carbon and fractions of soilactive carbon[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(9): 130–134. DOI: 10.11975/j.issn.1002-6819.2016.09.018
|
[10] |
张聪, 慕平, 尚建明. 长期持续秸秆还田对土壤理化特性、酶活性和产量性状的影响[J]. 水土保持研究, 2018, 25(1): 92–98.
Zhang C, Mu P, Shang J M. Effects of continuous returning corn straw on soil chemical properties, enzyme activities and yield trait[J]. Research of Soil and Water Conservation, 2018, 25(1): 92–98.
|
[11] |
Wang X J, Jia Z K, Liang L Y, et al. Maize straw effects on soil aggregation and other properties in arid land[J]. Soil and Tillage Research, 2015, 153: 131–136. DOI: 10.1016/j.still.2015.05.001
|
[12] |
李成芳, 寇志奎, 张枝盛, 等. 秸秆还田对免耕稻田温室气体排放及土壤有机碳固定的影响[J]. 农业环境科学学报, 2011, 30(11): 2362–2367.
Li C F, Kou Z K, Zhang Z S, et al. Effects of rape residue mulch on greenhouse gas emissions and carbon sequestration from no-tillage rice fields[J]. Journal of Agro-Environment Science, 2011, 30(11): 2362–2367.
|
[13] |
武玉, 徐刚, 吕迎春, 卲宏波. 生物炭对土壤理化性质影响的研究进展[J]. 地球科学进展, 2014, 1(29): 68–79. DOI: 10.11867/j.issn.1001-8166.2014.01-0068
Wu Y, Xu G, Lü Y C, Shao H B. Effects of biochar amendment on soil physical and chemical properties: Current status and knowledgegaps[J]. Advances in Earth Science, 2014, 29(1): 68–79. DOI: 10.11867/j.issn.1001-8166.2014.01-0068
|
[14] |
Zhang A F, Bian R J, Pan G X, et al. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles[J]. Field Crops Research, 2012, 127: 153–160. DOI: 10.1016/j.fcr.2011.11.020
|
[15] |
战秀梅, 彭靖, 王月, 等. 生物炭及炭基肥改良棕壤理化性状及提高花生产量的作用[J]. 植物营养与肥料学报, 2015, 21(6): 1633–1641. DOI: 10.11674/zwyf.2015.0631
Zhan X M, Peng J, Wang Y, et al. Influences of application of biochar and biochar–based fertilizer onbrown soil physiochemical properties and peanut yields[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(6): 1633–1641. DOI: 10.11674/zwyf.2015.0631
|
[16] |
陆畅, 徐畅, 黄容, 等. 秸秆和生物炭对油菜¬玉米轮作下紫色土有机碳及碳库管理指数的影响[J]. 草业科学, 2018, 35(3): 482–490. DOI: 10.11829/j.issn.1001-0629.2017-0345
Lu C, Xu C, Huang R, et al. Effect of straw and biochar on soil organic carbon and carbon pool management index in purple soil under rape-maize rotation[J]. Pratacultural Science, 2018, 35(3): 482–490. DOI: 10.11829/j.issn.1001-0629.2017-0345
|
[17] |
Demisie W, Liu Z, Zhang M. Effect of biochar on carbon fractions and enzyme activity of red soil[J]. Catena, 2014, 121: 214–221. DOI: 10.1016/j.catena.2014.05.020
|
[18] |
李正风, 张晓海, 夏玉珍, 等. 秸秆还田在植烟土壤性状改良上应用的研究进展[J]. 中国农学通报, 2007, 23(5): 165–170. DOI: 10.3969/j.issn.1000-6850.2007.05.038
Li Z F, Zhang X H, Xia Y Z, et al. Research progress on application of improving tobacco soil fertility by reusing of crop straws[J]. Chinese Agricultural Science Bulletin, 2007, 23(5): 165–170. DOI: 10.3969/j.issn.1000-6850.2007.05.038
|
[19] |
黄刘亚, 孙永波, 刘书武, 等. 生物炭对植烟土壤主要性状和烤烟产质量影响的研究进展[J]. 作物杂志, 2017, (4): 15–20.
Huang L Y, Sun Y B, Liu S W, et al. Research advance of the effects of biochar on the main properties of soil and yield and quality of flue-cured tobacco[J]. Crops, 2017, (4): 15–20.
|
[20] |
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000: 147–195.
Lu R K. Analysis methods of soil and agricultural chemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000: 128–129.
|
[21] |
Chodak M, Khanna P, Beese F. Hot water extractable C and N in relation to microbiological properties of soils under beech forests[J]. Biology and Fertility of Soils, 2003, 39: 123–130. DOI: 10.1007/s00374-003-0688-0
|
[22] |
吴金水. 土壤微生物生物量测定方法及其应用[M]. 北京: 气象出版社, 2006.
Wu J S. The measurement and application of soil microbial biomass[M]. Beijing: Meteorological Press, 2006.
|
[23] |
Loginow W, Wisniewski W, Gonet S S, et al. Fractionation of organic carbon based on susceptibility to oxidation[J]. Polish Journal of Soil Science, 1987, 20(1): 47–52.
|
[24] |
Han X Z, Wang S Y, Veneman P L M, Xing B S. Change of organic carbon content and its fractions in black soil under long-term application of chemical fertilizers and recycled organic manure[J]. Communications in Soil Science and Plant Analysis, 2006, 37: 1127–1137. DOI: 10.1080/00103620600588553
|
[25] |
赵海成, 郑桂萍, 靳明峰, 等. 连年秸秆与生物炭还田对盐碱土理化性状及水稻产量的影响[J]. 西南农业学报, 2018, 31(9): 1836–1844.
Zhao H C, Zheng G P, Jin M F, et al. Effects of successive straw and biochar residue incorporation on physical and chemical characters of saline alkali soil and rice yield[J]. Southwest China Journal of Agricultural Sciences, 2018, 31(9): 1836–1844.
|
[26] |
Xiu L Q, Zhang W M, Sun Y Y, et al. Effects of biochar and straw returning on the key cultivation limitations of Albic soil and soybean growth over 2 years[J]. Catena, 2019, 173: 481–493. DOI: 10.1016/j.catena.2018.10.041
|
[27] |
葛顺峰, 彭玲, 任饴华, 姜远茂. 秸秆和生物质炭对苹果园土壤容重、阳离子交换量和氮素利用的影响[J]. 中国农业科学, 2014, 47(2): 366–373. DOI: 10.3864/j.issn.0578-1752.2014.02.016
Ge S F, Peng L, Ren Y H, Jiang Y M. Effect of straw and biochar on soil bulk density, cation exchange capacity and nitrogen absorption in apple orchard soil[J]. Scientia Agricultura Sinica, 2014, 47 (2): 366–373. DOI: 10.3864/j.issn.0578-1752.2014.02.016
|
[28] |
刘楠, 赵兰坡. 添加玉米秸秆和硫酸铝对淡黑钙土化学性质的影响[J]. 玉米科学, 2015, 23(4): 84–91.
Liu N, Zhao L P. Effects of Adding straw and aluminum sulfate on chemical properties in light chernozems[J]. Journal of Maize Sciences, 2015, 23(4): 84–91.
|
[29] |
Glaser B, Lehmann J, Zech W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal: A review[J]. Biology and Fertility of Soils, 2002, 35(4): 219–230. DOI: 10.1007/s00374-002-0466-4
|
[30] |
马超, 周静, 郑学博, 等. 秸秆促腐还田对土壤养分和小麦产量的影响[J]. 土壤, 2012, 44(1): 30–35. DOI: 10.3969/j.issn.0253-9829.2012.01.005
Ma C, Zhou J, Zheng X B, et al.Effects of returning rice straw into field on soil nutrients and wheat yields under promoting decay condition[J]. Soils, 2012, 44(1): 30–35. DOI: 10.3969/j.issn.0253-9829.2012.01.005
|
[31] |
Xu M, Lou Y, Sun X, et al. Soil organic carbon active fractions as early indicators for total carbon change under straw incorporation[J]. Biology and Fertility of Soils, 2011, 47(7): 745–752. DOI: 10.1007/s00374-011-0579-8
|
[32] |
牛政洋, 闫伸, 郭青青, 等. 生物炭对两种典型植烟土壤养分、碳库及烤烟产质量的影响[J]. 土壤通报, 2017, 48(1): 155–161.
Niu Z Y, Yan S, Guo Q Q, et al. Effects of biochar on yield and quality of flue-cured tobacco and nutrients and carbon pool in two typical soils planted with tobacco[J]. Chinese Journal of Soil Science, 2017, 48 (1): 155–161.
|
[33] |
张婷, 佟忠勇, 张广才, 等. 添加稻草生物炭对水稻土磷含量和形态的影响[J]. 华北农学报, 2018, 33(1): 211–216. DOI: 10.7668/hbnxb.2018.01.030
Zhang T, Tong Z Y, Zhang G C, et al. Effects of rice straw-derived biochar on phosphorus content and form in paddy soil[J]. Agriculturae BorealiSinica, 2018, 33 (1): 211–216. DOI: 10.7668/hbnxb.2018.01.030
|
[34] |
Gong W, Yan X, Wang J, Hu T, et al. Long-term manureand fertilizer effects on soil organic matter fractions and microbes under a wheat-maize cropping system in northern China[J]. Geoderma, 2011, 149: 318–324.
|
[35] |
黎嘉成, 高明, 田冬, 等. 秸秆及生物炭还田对土壤有机碳及其活性组分的影响[J]. 草业学报, 2018, 27(5): 39–50. DOI: 10.11686/cyxb2017261
Li J C, Gao M, Tian D, et al. Effectsof straw and biochar on soil organic carbon and it active components[J]. Acta Prataculturae Sinica, 2018, 27(5): 39–50. DOI: 10.11686/cyxb2017261
|
[36] |
高梦雨, 江彤, 韩晓日, 杨劲峰. 施用炭基肥及生物炭对棕壤有机碳组分的影响[J]. 中国农业科学, 2018, 51(11): 2126–2135. DOI: 10.3864/j.issn.0578-1752.2018.11.010
Gao M Y, Jiang T, Han X R, Yang J F. Effects of applying biochar-based fertilizer and biochar on organic carbon fractions and contents of brown soil[J]. Scientia Agricultura Sinica, 2018, 51(11): 2126–2135. DOI: 10.3864/j.issn.0578-1752.2018.11.010
|
[37] |
He ZL, Yang XE, Baligar VC, Calvert DV. Microbiological and biochemical indexing systems for assessing acid soil quality[J]. Advances in Agronomy, 2003, 78: 89–138. DOI: 10.1016/S0065-2113(02)78003-6
|
[38] |
Liang Q, Chen H, Gong Y, et al. Effects of 15 years of manure and inorganic fertilizers on soil organic carbon fractions in a wheat-maize system in the North China Plain[J]. Nutrient Cycling in Agroecosystems, 2012, 92 (1): 21–33. DOI: 10.1007/s10705-011-9469-6
|
[39] |
潘艳斌, 朱巧红, 彭新华. 有机物料对红壤团聚体稳定性的影响[J]. 水土保持学报, 2017, 31(2): 209–214.
Pan Y B, Zhu Q H, Peng X H. Effect of organic materials on soil aggregate stability in red soil[J]. Journal of Soil and Water Conservation, 2017, 31(2): 209–214.
|
[40] |
Sandhu S S, Ussiri D A N, Kumar S, et al. Analyzing the impacts of three types of biochar on soil carbon fractions and physiochemical properties in a corn-soybean rotation[J]. Chemosphere, 2017, 184: 47–481.
|
[41] |
武天云, JeffJ. Schoenau, 李凤民, 等. 耕作对黄土高原和北美大草原三中典型农业土壤有机碳的影响[J]. 应用生态学报, 2003, 14(12): 2213–2218. DOI: 10.3321/j.issn:1001-9332.2003.12.027
Wu T Y, Schoenau J J, Li F M, et al. Influence of cultivation on organic carbon in three typical soils of China Loess Plateau and Canada Prairies[J]. Chinese Journal of Applied Ecology, 2003, 14(12): 2213–2218. DOI: 10.3321/j.issn:1001-9332.2003.12.027
|
[42] |
梁尧, 韩晓增, 宋春, 李海波. 不同有机物料还田对东北黑土活性有机碳的影响[J]. 中国农业科学, 2011, 44(17): 3565–3574. DOI: 10.3864/j.issn.0578-1752.2011.17.009
Liang Y, Han X Z, Song C, Li H B. Impacts of returning organic materials on soil labile organic carbon fractions redistribution of mollisol in northeast China[J]. Scientia Agricultura Sinica, 2011, 44(17): 3565–3574. DOI: 10.3864/j.issn.0578-1752.2011.17.009
|
[43] |
宇万太, 柳敏, 赵鑫, 等. 不同有机物料及其配施对潮棕壤轻组有机碳的动态影响[J]. 土壤通报, 2008, 6(39): 1307–1310.
Yu W T, Liu M, Zhao X, et al. Effects of different organic materials on light fraction organic carbon of soil[J]. Chinese Journal of Soil Science, 2008, 6 (39): 1307–1310.
|
[44] |
韩玮, 申双和, 谢祖彬, 等. 生物炭及秸秆对水稻土各密度组分有机碳及微生物的影响[J]. 生态学报, 2016, 36(18): 5838–5846.
Han W, Shen S H, Xie Z B, et al. Effects of biochar and straw on both the organic carbon in different density fractions and the microbial biomass in paddy soil[J]. Acta Ecologica Sinica, 2016, 36(18): 5838–5846.
|
[45] |
胡乃娟, 韩新忠, 杨敏芳, 等. 秸秆还田对稻麦轮作农田活性有机碳组分含量、酶活性及产量的短期效应[J]. 植物营养与肥料学报, 2015, 21(2): 371–377. DOI: 10.11674/zwyf.2015.0211
Hu N J, Han X Z, Yang M F, et al. Short-term influence of straw return on the contents of soil organic carbon fractions, enzyme activities and crop yields in rice-wheat rotation farmland[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(2): 371–377. DOI: 10.11674/zwyf.2015.0211
|
[46] |
王宏燕, 许毛毛, 孟雨田, 等. 玉米秸秆与秸秆生物炭对2种黑土有机碳含量及碳库指数的影响[J]. 江苏农业科学, 2017, 45(12): 228–232.
Wang H Y, Xu M M, Meng Y T, et al. Influences of maize straw and straw biochar on organic carbon content and carbon pool management index of two kinds of black soils[J]. Jiangsu Agricultural Sciences, 2017, 45(12): 228–232.
|
[47] |
张杰, 黄金生, 刘佳, 刘荣乐. 秸秆、木质素及其生物炭对潮土CO2释放及有机碳含量的影响[J]. 农业环境科学学报, 2015, 34(2): 401–408. DOI: 10.11654/jaes.2015.02.026
Zhang J, Huang J S, Liu J, Liu R L. Carbon dioxide emissions and organic carbon contents of fluvo-aquic soil as influenced by straw and lignin and their biochars[J]. Journal of Agro-Environment Science, 2015, 34(2): 401–408. DOI: 10.11654/jaes.2015.02.026
|
[48] |
贾俊香, 谢英荷, 李廷亮, 王玲. 秸秆与秸秆生物炭对采煤塌陷复垦区土壤活性有机碳的影响[J]. 应用与环境生物学报, 2016, 22(5): 787–792.
Jia J X, Xie Y H, Li T L, W L. Effect of the straw and its biochar on active organic carbon in reclaimed mine soils[J]. Chinese Journal of Applied Environmental Biology, 2016, 22 (5): 787–792.
|
[1] | AN Yong-qi, WANG Xiao-li, JIN Dong-shen, GAO Chun-hua, ZHANG Qiang, HONG Jian-ping, XU Ming-gang. Manure fertilization significantly increases the content of active organic carbon in reclaimed mine soil[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(6): 1117-1125. DOI: 10.11674/zwyf.19521 |
[2] | WANG Gai-ling, LI Li-ke, HAO Ming-de. Effect of long-term fertilization and straw mulch on the contents of labile organic matter and carbon management index[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(1): 20-26. DOI: 10.11674/zwyf.16095 |
[3] | WANG Shuo-lin, WANG Gai-lan, ZHAO Xu, CHEN Chun-yu, HUANG Xue-fang. Effect of long-term fertilization on organic carbon fractions and contents of cinnamon soil[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(1): 104-111. DOI: 10.11674/zwyf.2015.0111 |
[4] | ZHANG Guilong, ZHAO Jianning, SONG Xiaolong, LIU Hongmei, ZHANG Rui, JI Yanyan, YANG Dianlin*. Effects of fertilization on soil organic carbon and carbon pool management index[J]. Journal of Plant Nutrition and Fertilizers, 2012, 18(2): 359-365. DOI: 10.11674/zwyf.2012.11209 |
[5] | QIU Li-ping, ZHANG Xing-chang, CHENG Ji-min. Soil organic matter fractions and soil carbon management index in grasslands with different fencing ages[J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(5): 1166-1171. DOI: 10.11674/zwyf.2011.1073 |
[6] | LIU Meng-yun, CHANG Qing-rui, YANG Xiang-yun. Soil carbon fractions under different land use types in the tablelands of the Loess Plateau[J]. Journal of Plant Nutrition and Fertilizers, 2010, 16(6): 1418-1425. DOI: 10.11674/zwyf.2010.0617 |
[7] | LIU Hua, TONG Xiao-gang, XU Yong-mei, MA Xing-wang, WANG Xi-he, ZHANG Wen-ju, XU Ming-gang. Evolution characteristics of organic carbon fractions in gray desert soil under long-term fertilization[J]. Journal of Plant Nutrition and Fertilizers, 2010, 16(4): 794-800. DOI: 10.11674/zwyf.2010.0403 |
[8] | TONG Xiao-gang, HUANG Shao-min, XU Ming-gang, LU Chang-ai, ZHANG Wen-ju. Effects of the different long-term fertilizations on fractions of organic carbon in Fluvo-aquic soil[J]. Journal of Plant Nutrition and Fertilizers, 2009, 15(4): 831-836. DOI: 10.11674/zwyf.2009.0414 |
[9] | CHEN Shang-hong, ZHU Zhong-lin, LIU Ding-hui, SHU Li, WANG Chang-quan. Influence of straw mulching with no-till on soil nutrients and carbon pool management index[J]. Journal of Plant Nutrition and Fertilizers, 2008, 14(4): 806-809. DOI: 10.11674/zwyf.2008.0429 |
[10] | WANG Ling-li, HAN Xiao-ri, YANG Jin-feng, WANG Ye-qing, MA Ling-ling, LOU Yi-lai. Effect of long-term fertilization on organic carbon fractions in a brown soil[J]. Journal of Plant Nutrition and Fertilizers, 2008, 14(1): 79-83. DOI: 10.11674/zwyf.2008.0113 |
1. |
张钦,姚单君,廖恒,况胜剑,梁燕菲,曹卫东,朱青,秦松. 不同绿肥作物周年搭配种植下土壤微生物养分限制与土壤质量指数. 植物营养与肥料学报. 2025(01): 77-88 .
![]() | |
2. |
徐影,于镇华,李彦生,包文彬,张春雨,刘晓冰. 土壤酸化成因及其对农田土壤-微生物-作物系统影响的研究进展. 土壤通报. 2024(02): 562-572 .
![]() | |
3. |
牛天新,熊伟,吴新荣. 等氮条件下施用不同有机肥对玉米田大型土壤动物种群的影响. 安徽农学通报. 2024(16): 1-7 .
![]() | |
4. |
陈凤林,马祥爱,郝秀海,刘振钰,郭转霞. 化肥减量配施有机肥对玉米产量、养分吸收及氮素利用效率的影响. 灌溉排水学报. 2024(09): 49-56 .
![]() | |
5. |
张建军,党翼,赵刚,王磊,周刚,王淑英,李尚中,樊廷录,胡靖宇,王鹤龄,张文菊. 西北旱塬免耕的产量效应受降水特征和施肥显著影响. 植物营养与肥料学报. 2024(09): 1694-1704 .
![]() | |
6. |
蔡益航,刘小英,刘国强. 不同施肥方式对枇杷园土壤微生物群落结构的影响. 贵州农业科学. 2024(10): 69-79 .
![]() | |
7. |
姚志霞,周怀平,解文艳,杨振兴,陈浩宁,文永莉,程曼. 黄土旱塬24a不同秸秆还田土壤碳、氮、磷和胞外酶计量特征. 环境科学. 2023(05): 2746-2755 .
![]() | |
8. |
刘玉颖,沈丰,杨劲峰,蔡芳芳,付时丰,罗培宇,李娜,戴健,韩晓日. 长期施肥棕壤大豆产量的演变及土壤氮素分布特征. 中国农业科学. 2023(10): 1920-1934 .
![]() | |
9. |
房彦飞,徐文修,唐江华,符小文,张永杰,杜孝敬,张娜,安崇霄. 复播大豆土壤微生物区系对麦–豆轮作体系周年施氮量的响应. 土壤. 2023(02): 305-312 .
![]() | |
10. |
张成兰,刘春增,李本银,郑春风,张济世,吕玉虎,徐祺豪,曹卫东. 紫云英配施化肥对我国水稻产量效应的整合分析. 中国土壤与肥料. 2023(03): 39-45 .
![]() | |
11. |
谢钧宇,张慧芳,李佳慧,曹寒冰,王楚涵,高健永,洪坚平,孟会生. 采煤塌陷区复垦土壤有机碳固持及酶活性对长期施肥的响应. 应用与环境生物学报. 2023(03): 696-703 .
![]() | |
12. |
王蕊,王金贵,李洁,胡庆兰,郭赋涵,孙扬,王瑞刚. 施肥模式对青海籽用油菜和青稞种植区土壤养分和微生物群落结构的影响. 青海大学学报. 2023(04): 24-32 .
![]() | |
13. |
左小玉,肖琼,邬磊,杨钙仁,张文菊. 施肥对我国农田土壤基础呼吸的影响. 植物营养与肥料学报. 2023(08): 1379-1389 .
![]() | |
14. |
刘春增,张琳,丁丽,张香凝,郑春风,张成兰,吕玉虎,曹卫东,张济世,张玉亭. 稻田土壤真菌群落结构与功能对化肥减量配施紫云英还田的响应. 中国土壤与肥料. 2023(09): 68-76 .
![]() | |
15. |
郭智妍,卢维宏,潘思雨,程瑞妍,荚俊飞,曾明志. 2种有机调理剂复配中微量元素对大豆生长及根际土壤微环境的影响. 腐植酸. 2023(06): 41-48 .
![]() | |
16. |
王雨婷,曹卫东,邹长明,高嵩涓,常单娜,周国朋. 磷钾对紫云英(Astragalus sinicas L.)生长和土壤性状的影响. 中国土壤与肥料. 2022(01): 54-62 .
![]() | |
17. |
冉继伟,肖琼,黄敏,蔡岸冬,张文菊. 施肥对农田土壤抗生素抗性基因影响的整合分析. 环境科学. 2022(03): 1688-1696 .
![]() | |
18. |
黄晓曼,李文卿,陈顺辉,蒋雨洲,刘青丽,李志宏,张云贵,郑朝元. 长期有机肥投入对烟株根际土壤真菌群落结构的影响. 江西农业学报. 2022(01): 108-118 .
![]() | |
19. |
郑炳言,李威锋,罗福广,王志强,李艳和. 生物肥对螺蛳养殖稻田底泥微生物数量的影响. 湖北农业科学. 2022(06): 27-32 .
![]() | |
20. |
杨叶华,黄兴成,朱华清,李渝,张松,张雅蓉,刘彦伶,蒋太明. 长期有机与无机肥配施的黄壤稻田土壤细菌群落结构特征. 植物营养与肥料学报. 2022(06): 984-992 .
![]() | |
21. |
卞倩倩,王雁楠,陈金金,乔守晨,胡琳琳,尹雨萌,杨晓平,杨育峰. 施钾对我国甘薯产量和土壤钾素平衡影响的Meta分析. 植物营养与肥料学报. 2022(08): 1509-1519 .
![]() | |
22. |
孔德杰,李娜,任成杰,王维钰,任广鑫,冯永忠,杨改河,刘娜娜. 不同施肥水平对长期麦豆轮作体系土壤氮素及产量的影响. 西北农业学报. 2022(06): 729-740 .
![]() | |
23. |
李学敏,刘淑娟,刘光武,赵鹏,刘开琳,刘虎俊. 干旱区沙土施用牛粪有机肥的土壤生物特性响应. 安徽农业科学. 2022(23): 140-143 .
![]() | |
24. |
纪耀坤. 化肥与有机肥及土壤改良基质配施对土壤质量和小麦生长发育的影响. 江苏农业科学. 2022(21): 221-227 .
![]() | |
25. |
袁梦,邢稳,罗美玲,王玉峰,谷学佳,宋吉青,娄翼来. 东北稻田有机肥替代部分氮肥措施下土壤酶群分析. 生态学杂志. 2021(01): 123-130 .
![]() | |
26. |
李其胜,杨凯,汪志鹏,赵贺,焦加国,李辉信. 稻-油轮作下有机替代对土壤胞外酶活性及多功能性的影响. 水土保持学报. 2021(02): 345-352+360 .
![]() | |
27. |
ZHANG Mei-jun,JIA Ju-qing,LU Hua,FENG Mei-chen,YANG Wu-de. Functional diversity of soil microbial communities in response to supplementing 50% of the mineral N fertilizer with organic fertilizer in an oat field. Journal of Integrative Agriculture. 2021(08): 2255-2264 .
![]() |
|
28. |
刘金萍,刘艳丽,邵雨晴,李银辉,王修康,薛韧,李成亮. 海藻复合肥对夏玉米产量及养分吸收利用的影响. 河南农业大学学报. 2021(03): 429-434 .
![]() | |
29. |
夏文建,柳开楼,张丽芳,刘佳,叶会财,邓国强,李大明,李祖章,王萍,李瑶,杨成春,彭春瑞,陈金. 长期施肥对红壤稻田土壤微生物生物量和酶活性的影响. 土壤学报. 2021(03): 628-637 .
![]() | |
30. |
李银科,刘虎俊,李菁菁,万翔,张芝萍. 施用不同有机肥对种植甜高粱土壤生物学特性的影响. 干旱区资源与环境. 2021(09): 171-176 .
![]() | |
31. |
王俊红,王星琳,王康,任振兴,王梦亮. 生物有机肥替代化肥对小麦根际土壤环境的影响. 华北农学报. 2021(04): 155-162 .
![]() | |
32. |
邓时铭,何志刚,邹利,刘丽,李金龙,郑梦婷,蒋国民,王冬武,刘晓燕. 稻鳅共作模式对土壤营养、酶活性及微生物多样性的影响. 江苏农业科学. 2021(17): 216-220 .
![]() | |
33. |
李圆宾,李鹏,王舒华,徐璐瑶,邓建军,焦加国. 稻麦轮作体系下有机肥施用对作物产量和土壤性质影响的整合分析. 应用生态学报. 2021(09): 3231-3239 .
![]() | |
34. |
周家新,段昶,曹亚凡,黄金辉,金康,程黄萍,柏永超,王永齐,杨悦章. 微生物菌剂对烤烟植物学性状与农艺性状的影响. 安徽农学通报. 2021(19): 40-42+44 .
![]() | |
35. |
于宝海,王亚军,贾洪男,赵俊国,孙奎仓,张婷. 增施有机肥对谷子耕地土壤细菌的影响. 现代农村科技. 2021(11): 113-114 .
![]() | |
36. |
严焕焕,耿贵工,乔枫,韩燕,孙小凤. 氮、硫及氮硫交互对土壤酶活性的影响. 青海大学学报. 2020(02): 20-25 .
![]() | |
37. |
张露,张水清,任科宇,李俊杰,段英华,徐明岗. 不同肥力潮土的酶活计量比特征及其与微生物量的关系. 中国农业科学. 2020(20): 4226-4236 .
![]() | |
38. |
陈余平,郑华章,周飞,胡铁军. 轮作和有机肥对滨海灰潮土土壤微生物种群的影响. 浙江农业科学. 2020(10): 2159-2162 .
![]() | |
39. |
廖朝选,钱青青,齐凯,罗干,何季. 施磷肥对大豆土壤微生物数量及酶活性的影响. 贵阳学院学报(自然科学版). 2020(03): 73-79 .
![]() | |
40. |
杨竣皓,骆永丽,陈金,金敏,王振林,李勇. 秸秆还田对我国主要粮食作物产量效应的整合(Meta)分析. 中国农业科学. 2020(21): 4415-4429 .
![]() | |
41. |
王革平. 氮磷钾肥配施对草原植物群落生物量的影响. 草原与草业. 2020(04): 27-31 .
![]() | |
42. |
邹湘,易博,张奇春,邸洪杰. 长期施肥对稻田土壤微生物群落结构及氮循环功能微生物数量的影响. 植物营养与肥料学报. 2020(12): 2158-2167 .
![]() | |
43. |
易克,张锦韬,刘建峰,杨文蛟,孙康,吴宗海,李川保,高兴秀,李强. 施用功能微生物菌剂对烤烟生长及烟叶产质量的影响. 作物研究. 2019(03): 215-219 .
![]() | |
44. |
戚瑞敏,温延臣,赵秉强,林治安,李志杰,李娟. 长期不同施肥潮土活性有机氮库组分与酶活性对外源牛粪的响应. 植物营养与肥料学报. 2019(08): 1265-1276 .
![]() | |
45. |
路花,张美俊,冯美臣,王超,王晓雪,杨武德. 氮肥减半配施有机肥对燕麦田土壤微生物群落功能多样性的影响. 生态学杂志. 2019(12): 3660-3666 .
![]() |