• ISSN 1008-505X
  • CN 11-3996/S
AN Yong-qi, WANG Xiao-li, JIN Dong-shen, GAO Chun-hua, ZHANG Qiang, HONG Jian-ping, XU Ming-gang. Manure fertilization significantly increases the content of active organic carbon in reclaimed mine soil[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(6): 1117-1125. DOI: 10.11674/zwyf.19521
Citation: AN Yong-qi, WANG Xiao-li, JIN Dong-shen, GAO Chun-hua, ZHANG Qiang, HONG Jian-ping, XU Ming-gang. Manure fertilization significantly increases the content of active organic carbon in reclaimed mine soil[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(6): 1117-1125. DOI: 10.11674/zwyf.19521

Manure fertilization significantly increases the content of active organic carbon in reclaimed mine soil

More Information
  • Received Date: December 25, 2019
  • Accepted Date: April 21, 2020
  • Available Online: June 22, 2020
  • Objectives 

    Soil organic carbon is the core of soil fertility, the fractions of organic carbon are highly heterogeneous. We studied the promotion effect of fertilization on different organic carbon fractions to provide theoretical basis for efficient remediation of coal mining soil.

    Methods 

    A field experiment was conducted in the coal mining reclamation soil in Shanxi Province since 2014. The planting system was rotation of one-year-soybean with two-year-maize. Five fertilization treatments included natural recovery (ZH), no fertilization (CK), chemical fertilizer (NPK), organic manure (M), manure combined with chemical fertilizer (MNPK). In the 2018 maize season, 0‒20 cm top soil samples were collected. Using the physical-chemical fractionation methods, the soil organic carbon were classified into four fractions: unprotected fractions, physical protective fractions, chemical protective fractions and biochemical protective fractions. The saturation trend of soil organic carbon by analyzing the correlation between the fractions carbon and the total organic carbon content.

    Results 

    Compared with natural reclamation, rotation significantly increased the soil total organic carbon content (P < 0.05). Soil total organic carbon increased by 11.8%, 24.0%, 38.8% and 49.3% respectively in CK, NPK, M and MNPK treatments, and M and MNPK trenaments were significantly higher than in CK and NPK treatments. Of the total organic C in M and MNPK treatments, the unprotected organic C were 2.11 g/kg and 1.68 g/kg and the physically protected organic C were 0.70 g/kg and 0.49 g/kg, respectively, which were significantly higher than in CK and NPK treatments; while the chemically protected organic C and biochemical protection organic C content were not significantly different among the four treatments. The quality ratios of each fraction in M and MNPK treatments were not significantly different with the CK and NKP treatments in the light fraction, silt and clay in the micro-aggregate, but significantly in the large aggregates (unprotected and physically-protected). The organic C in unprotected coarse and fine particles and the physically protected organic C were all significantly and positively correlated with the total organic C content (P < 0.01). According to the slope of the fitted equation, with the increase of total organic C per unit, the highest increase rate in the four fractions was the unprotected coarse particle organic C (39.7%), then were the unprotected fine particulate organic C (18.6%) and physically protected organic C (21.7%), respectively. The relationship between the silt and clay of chemical protection fractions C and the clay of biochemical protection fractions C were not significant with the total organic C.

    Conclusions 

    Fertilization and crop rotation are more effective than natural recovery in rapid increase of soil organic carbon contents, manure are more effective than pure NPK fertilization. Single and combined application of manure with NPK could increase the coarse aggregates contents, i.e. increase the friable unprotected coarse and fine particle C and physically protected C, and single manure application performs better than with NPK together. However, as the newly increased soil carbon are quite active, so long-term organic manure input is necessary for the recovery of soil function in coal mine reclamation.

  • [1]
    唐孝辉. 山西采煤沉陷区现状、危害及治理[J]. 生态经济, 2016, 32(2): 6–9.

    Tang X H. Present situation, harm and treatment of coal mining subsidence area in Shanxi Province[J]. Ecological Economy, 2016, 32(2): 6–9.
    [2]
    胡振琪, 魏忠义. 煤矿区采动与复垦土壤存在的问题与对策[J]. 能源环境保护, 2003, 17(3): 3–7. DOI: 10.3969/j.issn.1006-8759.2003.03.001

    Hu Z Q, Wei Z Y. Problems and Countermeasures of mining and reclamation soil in coal mining area[J]. Energy Environmental Protection, 2003, 17(3): 3–7. DOI: 10.3969/j.issn.1006-8759.2003.03.001
    [3]
    Lehmann J, Kleber M. The contentious nature of soil organic matter[J]. Nature, 2015, 528(7580): 60–68. DOI: 10.1038/nature16069
    [4]
    Pan G X, Smith P, Pan W N. The role of soil organic matter in maintaining the productivity and yield stability of cereals in China[J]. Agriculture Ecosystems & Environment, 2009, 129(1): 344–348.
    [5]
    Six J, Paustian K, Elliott E T, Combrink C. Soil structure and organic matter: I. Distribution of aggregate-size classes and aggregate-associated carbon[J]. Soil Science Society of America Journal, 2000, 64(2): 681–689. DOI: 10.2136/sssaj2000.642681x
    [6]
    李建华, 李华, 郜春花, 等. 长期施肥对晋东南矿区复垦土壤团聚体稳定性及有机碳分布的影响[J]. 华北农学报, 2018, 33(5): 192–198.

    Li J H, Li H, Gao C H, et al. Effects of long-term fertilization on reclaimed soil aggregate stability and distribution of carbon in the southeastern Shanxi mining area[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(5): 192–198.
    [7]
    何冰, 李廷亮, 栗丽, 等. 复垦土壤水稳性团聚体碳氮分布对施肥的响应[J]. 天津农业科学, 2019, 25(3): 47–53.

    He B, Li T L, Li L, et al. Response of carbon and nitrogen distribution of water-stable aggregates to fertilization in reclaimed soil[J]. Tianjin Agricultural Sciences, 2019, 25(3): 47–53.
    [8]
    陆太伟, 蔡岸冬, 徐明岗, 等. 施用有机肥提升不同土壤团聚体有机碳含量的差异性[J]. 农业环境科学学报, 2018, 37(10): 99–109.

    Lu T W, Cai A D, Xu M G, et al. Variation in sequestration of organic carbon associated with differently sized aggregates after organic manure application[J]. Journal of Agro-Environment Science, 2018, 37(10): 99–109.
    [9]
    Xu M G, Lou Y L, Sun X L, et al. Soil organic carbon active fractions as early indicators for total carbon change under straw incorporation[J]. Biology and Fertility of Soils, 2011, 47(7): 745–752. DOI: 10.1007/s00374-011-0579-8
    [10]
    Tong X G, Xu M G, Wang X J, et al. Long-term fertilization effects on organic carbon fractions in a red soil of China[J]. Catena, 2014, 113: 251–259. DOI: 10.1016/j.catena.2013.08.005
    [11]
    Hassink J. The capacity of soils to preserve organic C and N by their association with clay and silt particles[J]. Plant and Soil, 1997, 191(1): 77–87. DOI: 10.1023/A:1004213929699
    [12]
    苑亚茹, 邹文秀, 郝翔翔, 等. 黑土团聚体结合碳对不同有机肥施用量的响应[J]. 生态学报, 2019, 39(9): 3235–3242.

    Yuan Y R, Zou W X, Hao X X, et al. Response of aggregate–associated carbon in Mollisols to application rate of organic manure[J]. Acta Ecologica Sinica, 2019, 39(9): 3235–3242.
    [13]
    邓文悦, 柳开楼, 田静, 等. 长期施肥对水稻土不同功能有机质库碳氮分布的影响[J]. 土壤学报, 2017, 54(2): 468–479.

    Deng W Y, Liu K L, Tian J, et al. Effects of long-term fertilization on distribution of carbon and nitrogen in different functional soil organic matter fractions in paddy Soil[J]. Acta Pedologica Sinica, 2017, 54(2): 468–479.
    [14]
    Stewart C E, Plante A F, Paustian K, et al. Soil Carbon Saturation: Linking Concept and Measurable Carbon Pools[J]. Soil Science Society of America Journal, 2008, 72(2): 379. DOI: 10.2136/sssaj2007.0104
    [15]
    Stewart C E, Paustian K, Conant R T, et al. Soil carbon saturation: Implications for measurable carbon pool dynamics in long-term incubations[J]. Soil Biology & Biochemistry, 2009, 41(2): 357–366.
    [16]
    Six J, Conant R T, Paul E A, Paustian K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils[J]. Plant and Soil, 2002, 241(2): 155–176. DOI: 10.1023/A:1016125726789
    [17]
    Ussiri D A N, Jacinthe P A, Lal R. Methods for determination of coal carbon in reclaimed Minesoils: A review[J]. Geoderma, 2014, 214–215: 156–167.
    [18]
    焦欢, 李廷亮, 高继伟, 等. 培肥措施对复垦土壤轻重组有机碳氮的影响[J]. 水土保持学报, 2018, 32(5): 208–213.

    Jiao H, Li T L, Gao J W, et al. Effects of fertilization on light and heavy fractions organic nitrogen in reclaimed soil[J]. Journal of Soil and Water Conservation, 2018, 32(5): 208–213.
    [19]
    何浩, 危常州, 李俊华, 等. 商品有机肥替代部分化肥对玉米生长、产量及土壤肥力的影响[J]. 新疆农业科学, 2019, 56(2): 325–332.

    He H, Wei C Z, Li J H, et al. Effects of commercial organic fertilizer replacing partial chemical fertilizer on maize growth, yield and soil fertility[J]. Xinjiang Agricultural Sciences, 2019, 56(2): 325–332.
    [20]
    Banger K, Kukal S S, Toor G, et al. Impact of long-term additions of chemical fertilizers and farmyard manure on carbon and nitrogen sequestration under rice-cowpea cropping system in semi-arid tropics[J]. Plant and Soil, 2009, 318: 27–35. DOI: 10.1007/s11104-008-9813-z
    [21]
    刘满强, 胡锋, 陈小云. 土壤有机碳稳定机制研究进展[J]. 生态学报, 2006, 27(6): 2642–2650.

    Liu M Q, Hu F, Chen X Y. A review on mechanisms of soil organic carbon stabilization[J]. Acta Ecologica Sinica, 2006, 27(6): 2642–2650.
    [22]
    Jiang M B, Wang X H, Liusui Y H, et al. Variation of soil aggregation and intra–aggregate carbon by long-term fertilization with aggregate formation in a grey desert soil[J]. Catena, 2017, 149: 437–445. DOI: 10.1016/j.catena.2016.10.021
    [23]
    Christensen B T. Physical fractionation of soil and structural and functional complexity in organic matter turnover[J]. European Journal of Soil Science, 2001, 52(3): 345–353. DOI: 10.1046/j.1365-2389.2001.00417.x
    [24]
    Chan K Y, Heenan D P, Oates A. Soil carbon fractions and relationship to soil quality under different tillage and stubble management[J]. Soil and Tillage Research, 2002, 63(3–4): 133–139. DOI: 10.1016/S0167-1987(01)00239-2
    [25]
    王朔林, 王改兰, 赵旭, 等. 长期施肥对栗褐土有机碳含量及其组分的影响[J]. 植物营养与肥料学报, 2015, 21(1): 104–111. DOI: 10.11674/zwyf.2015.0111

    Wang S L, Wang G L, Zhao X, et al. Effect of long–term fertilization on organic carbon fractions and contents of cinnamon soil[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(1): 104–111. DOI: 10.11674/zwyf.2015.0111
    [26]
    Mrabet R, Saber N, El-Brahli A, et al. Total, particulate organic matter and structural stability of a Calcixeroll soil under different wheat rotations and tillage systems in a semiarid area of Morocco[J]. Soil and Tillage Research, 2001, 57(4): 225–235. DOI: 10.1016/S0167-1987(00)00180-X
    [27]
    刘骅, 佟小刚, 许咏梅, 等. 长期施肥下灰漠土有机碳组分含量及其演变特征[J]. 植物营养与肥料学报, 2010, 16(4): 794–800. DOI: 10.11674/zwyf.2010.0403

    Liu H, Tong X G, Xu Y M, et al. Evolution characteristics of organic carbon fractions in gray desert soil under long-term fertilization[J]. Journal of Plant Nutrition and Fertilizers, 2010, 16(4): 794–800. DOI: 10.11674/zwyf.2010.0403
    [28]
    Stewart C E, Paustian K, Conant R T, et al. Soil carbon saturation: concept, evidence and evaluation[J]. Biogeochemistry, 2007, 86(1): 19–31. DOI: 10.1007/s10533-007-9140-0
    [29]
    徐香茹, 蔡岸冬, 徐明岗, 等. 长期施肥下水稻土有机碳固持形态与特征[J]. 农业环境科学学报, 2015, 34(4): 753–760. DOI: 10.11654/jaes.2015.04.021

    XU X R, CAI A D, XU M G, et al. Characteristics of organic carbon stabilization in paddy soil under long–term different fertilization[J]. Journal of Agro-Environment Science, 2015, 34(4): 753–760. DOI: 10.11654/jaes.2015.04.021
    [30]
    Xu X R, Zhang W J, Xu M G, et al. Characteristics of differently stabilised soil organic carbon fractions in relation to long-term fertilisation in Brown Earth of Northeast China[J]. Science of The Total Environment, 2016, 572: 1101–1110. DOI: 10.1016/j.scitotenv.2016.08.018
    [31]
    张丽敏, 徐明岗, 娄翼来, 等. 长期施肥下黄壤性水稻土有机碳组分变化特征[J]. 中国农业科学, 2014, 47(19): 3817–3825. DOI: 10.3864/j.issn.0578-1752.2014.19.010

    Zhang L M, Xu M G, Lou Y L, et al. Changes in yellow paddy soil organic carbon fractions under long-term fertilization[J]. Scientia Agricultura Sinica, 2014, 47(19): 3817–3825. DOI: 10.3864/j.issn.0578-1752.2014.19.010
    [32]
    Lal R. Soil carbon sequestration to mitigate climate change[J]. Geoderma, 2004, 123(1–2): 1–22. DOI: 10.1016/j.geoderma.2004.01.032
    [33]
    王小利, 郭振, 段建军, 等. 黄壤性水稻土有机碳及其组分对长期施肥的响应及其演变[J]. 中国农业科学, 2017, 50(23): 4593–4601. DOI: 10.3864/j.issn.0578-1752.2017.23.012

    Wang X L, Guo Z, Duan J J, et al. The changes of organic carbon and its fractions in yellow paddy soils under long-term fertilization[J]. Scientia Agricultura Sinica, 2017, 50(23): 4593–4601. DOI: 10.3864/j.issn.0578-1752.2017.23.012
    [34]
    佟小刚, 徐明岗, 张文菊, 卢昌艾. 长期施肥对红壤和潮土颗粒有机碳含量与分布的影响[J]. 中国农业科学, 2008, 41(11): 3664–3671. DOI: 10.3864/j.issn.0578-1752.2008.11.029

    Tong X G, Xu M G, Zhang W J, Lu C A. Influence of long-term fertilization on content and distribution of organic carbon in particle-size fractions of red soil and fluvo-aquic soil in China[J]. Scientia Agricultura Sinica, 2008, 41 (11): 3664–3671. DOI: 10.3864/j.issn.0578-1752.2008.11.029
    [35]
    Aoyama M, Angers D A, N’ Dayegamiye A. Particulate and mineral-associated organic matter in water-stable aggregates as affected by mineral fertilizer and manure applications[J]. Canadian Journal of Soil Science, 1999, 79(2): 295–302. DOI: 10.4141/S98-049
  • Related Articles

    [1]WANG Ya-run, ZHAO Juan, YANG Zhen-xing, ZHOU Huai-ping, XIE Wen-yan, LIU Zhi-ping. Organic carbon composition and carbon sequestration function of cinnamon soil as affected by fertilization modes[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(3): 469-481. DOI: 10.11674/zwyf.2023456
    [2]CAO Xin-xin, LIU Li-jun, ZHA Li-xia, LU Xu-yang, CHANG Kun, XU Ying-de. Soil microbial residual carbon accumulation as affected by freeze-thaw intensity and maize straw incorporation[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(12): 2152-2160. DOI: 10.11674/zwyf.2022192
    [3]XU Ming-gang, LI Ran, SUN Nan, AN Yong-qi, WANG Xiao-li, JIN Dong-sheng, LI Jian-hua, ZHANG Qiang, Hong Jian-ping, SHEN Hua-ping. Soil organic carbon sequestration efficiency and fractions as affected by organic fertilization rate in reclaimed cultivated land[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(12): 2143-2151. DOI: 10.11674/zwyf.2022174
    [4]YOU Jin-wei, WANG Jun, HU Hong-qing, WANG Hui, YE Lei. Effects of straw returning on soil organic carbon components in ratoon rice field[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(8): 1451-1458. DOI: 10.11674/zwyf.19438
    [5]WANG Yi, ZHANG Jun-qing, KUANG Shuai, GUAN En-sen, ZHUO Qi-cui, SONG Xiao-pei, LU Wei-long, WANG Da-hai, LIU Yue-dong, ZHANG Ji-guang. Effects of wheat straw and its biochar application on soil physiochemical properties and organic carbon fractions in flue-cured tobacco field[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(2): 285-294. DOI: 10.11674/zwyf.19078
    [6]WANG Shuo-lin, WANG Gai-lan, ZHAO Xu, CHEN Chun-yu, HUANG Xue-fang. Effect of long-term fertilization on organic carbon fractions and contents of cinnamon soil[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(1): 104-111. DOI: 10.11674/zwyf.2015.0111
    [7]LIU Meng-yun, CHANG Qing-rui, YANG Xiang-yun. Soil carbon fractions under different land use types in the tablelands of the Loess Plateau[J]. Journal of Plant Nutrition and Fertilizers, 2010, 16(6): 1418-1425. DOI: 10.11674/zwyf.2010.0617
    [8]LIU Hua, TONG Xiao-gang, XU Yong-mei, MA Xing-wang, WANG Xi-he, ZHANG Wen-ju, XU Ming-gang. Evolution characteristics of organic carbon fractions in gray desert soil under long-term fertilization[J]. Journal of Plant Nutrition and Fertilizers, 2010, 16(4): 794-800. DOI: 10.11674/zwyf.2010.0403
    [9]TONG Xiao-gang, HUANG Shao-min, XU Ming-gang, LU Chang-ai, ZHANG Wen-ju. Effects of the different long-term fertilizations on fractions of organic carbon in Fluvo-aquic soil[J]. Journal of Plant Nutrition and Fertilizers, 2009, 15(4): 831-836. DOI: 10.11674/zwyf.2009.0414
    [10]WANG Ling-li, HAN Xiao-ri, YANG Jin-feng, WANG Ye-qing, MA Ling-ling, LOU Yi-lai. Effect of long-term fertilization on organic carbon fractions in a brown soil[J]. Journal of Plant Nutrition and Fertilizers, 2008, 14(1): 79-83. DOI: 10.11674/zwyf.2008.0113
  • Cited by

    Periodical cited type(8)

    1. 李文军,黄庆海,李大明,柳开楼,张文菊,徐明岗. 长期施肥下旱地红壤不同保护态有机碳库变化特征. 农业资源与环境学报. 2023(01): 106-115 .
    2. 单会茹,张璐,高强,段英华,徐明岗. 红壤有机碳组分中微生物群落构成及均匀度决定其矿化特征. 植物营养与肥料学报. 2023(01): 109-119 . 本站查看
    3. 孟庆俊,韩晓雨,宋超,朱雪强,秦东富,李昂,冯启言. 灵泉露天闭坑煤矿土壤肥力特征与生态恢复适宜植物选择. 矿业安全与环保. 2023(03): 136-144 .
    4. 马守臣,王新生,刘赛赛,张合兵. 不同耕作方式对矿区复垦耕地的碳库时间效应和耕地生产力的影响. 煤炭学报. 2023(07): 2858-2868 .
    5. 袁运许,许永利,刘硕,马百衡,冀广,宋建伟,李小光. 河北省主要铁矿迹地复垦区土壤肥力现状调查分析. 有色金属(矿山部分). 2022(06): 55-63 .
    6. 司海丽,纪立东,李磊,勉有明,朱英,刘菊莲,尚红莺,杨洋. 生物有机肥对宁夏盐碱地土壤养分和生物学特性的影响. 土壤. 2022(06): 1124-1131 .
    7. 胡振琪,陈洋,刘曙光,张驭航,刘金兰,刘欣. 2020年土地科学研究重点进展评述及2021年展望——土地工程与信息技术分报告. 中国土地科学. 2021(02): 113-122 .
    8. 程子捷,王玺洋,陈志,华进城. 矿山复垦研究热点与发展趋势——基于Citespace可视化分析. 环境生态学. 2021(08): 71-79 .

    Other cited types(13)

Catalog

    Article views (2018) PDF downloads (109) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return